Schattenblick → INFOPOOL → MEDIZIN → TECHNIK


FORSCHUNG/111: Mikroroboter, die Tumore präzise mit Medikamenten angreifen (idw)


Eidgenössische Technische Hochschule Zürich (ETH Zürich) - 22.03.2016

Winzlinge mit revolutionärem Potenzial

Mikro- und Nanoroboter, die Tumore höchstpräzise mit Medikamenten angreifen: So könnte Krebsbekämpfung in Zukunft aussehen. Grundlagen dafür liefert die Gruppe von ETH-Forscher Salvador Pané mit magnetoelektrisch gesteuerten Janus-Maschinen.


Eines Tages nach der Arbeit sass Salvador Pané in einem Trolleybus in Zürich. Er war in seine Gedanken vertieft, da stoppte der Bus plötzlich wegen einer Fahrleitungsstörung. Dabei kam dem ETH-Forscher eine Idee: "Warum können wir nicht einen Mikroroboter erschaffen, der elektrische Energie kabellos erzeugt?" Der Gedanke liess ihn nicht mehr los - mit Folgen: Pané und seinen Kollegen ist es gelungen, winzige Partikel herzustellen, die durch Magnetfelder zum einen präzise gesteuert werden und zum anderen elektrische Felder erzeugen.

Das mag unspektakulär klingen, ist aber ein Durchbruch. Die Einzigartigkeit liegt darin, dass eine Mikrostruktur durch eine einzige Energiequelle nicht nur bewegt sondern gleichzeitig zur Ausübung einer weiteren Funktionalität gebracht wird. Bis dahin war das normalerweise nur unabhängig voneinander möglich. Pané und sein Team vom Institut für Robotik und Intelligente Systeme (IRIS) der ETH Zürich haben ihre Forschungsresultate in der Wissenschaftszeitschrift Materials Horizons publiziert.

Wie die Schichten einer Lasagne

Pané beschäftigt sich seit Jahren mit sogenannten magnetoelektrischen Mikro- und Nanorobotern, die durch elektromagnetische Felder stimuliert werden. Manche dieser Materialien sind aus verschiedenen Schichten aufgebaut, die jeweils eine andere Reaktion auf das angelegte magnetische Feld zeigen. "Man kann sich das wie eine zweischichtige Lasagne vorstellen: Eine Schicht reagiert auf das Feld, indem sie sich deformiert. Diese Materialien sind magnetostriktiv", erklärt Pané. "Durch die Deformation gerät die zweite, so genannt piezolektrische Schicht unter Druck und erzeugt dadurch ein elektrisches Feld."

Diesen Effekt machen sich die ETH-Forscher zunutze: Sie haben die Mikropartikel auf einer Seite mit zwei verschiedenen Metallschichten aus Kobalt-Ferrit (magnetostriktiv) und Bariumtitanat (piezoelektrisch) ummantelt - die zwei Schichten der Lasagne: Nachdem ein magnetisches Feld um die Partikel herum erzeugt wird, dehnt sich die innere Schicht aus Kobalt-Ferrit aus, die äussere Schicht aus Bariumtitanat wird deformiert und generiert daraufhin ein elektrisches Feld um die Mikropartikel.

Medikamente zum Ziel bringen

Die Mikroroboter sind aufgrund ihrer unterschiedlichen Hälften nach dem doppelköpfigen römischen Gott Janus benannt. Bewegt werden die Janus-Partikel mittels rotierender Magnetfelder. Wird das Magnetfeld verändert, erzeugen die Mikroroboter ein elektrisches Feld.

Damit eröffnet sich ein breites Anwendungsfeld, insbesondere in der Medizin. "Wir könnten die Mikroroboter beispielsweise mit Medikamenten bestücken und gezielt zu Krebstumoren im Körper lenken, wo sie durch den Stimulus des generierten elektrischen Feldes ihre Fracht abladen", erklärt Pané. Damit könnten Nebeneffekte von Krebsmedikamenten praktisch ausgeschlossen werden, weil nur Krebszellen angegriffen würden. "Zusätzlich wird die präzise Applikation die Effizienz der Krebstherapien deutlich steigern."

Auch andere Anwendungen wie die drahtlose elektrische Stimulation von Zellen könnten sich revolutionär auf die regenerative Medizin auswirken.

Korrosion im Auge behalten

Bis die Mikroroboter tatsächlich als Transportmittel für Medikamente eingesetzt werden können, sind viele offene Fragen zu beantworten. So ist noch nicht geklärt, welches die effizienteste Struktur respektive Materialkombination mit den höchsten magnetoelektrischen Eigenschaften ist.

Zudem müssen die Mikroroboter hinsichtlich ihrer Verträglichkeit im menschlichen Körper geprüft werden. Als Beispiel nennt der Forscher die Korrosion: "Sie wird in diesem Mikro- und Nanobereich oft übersehen, muss aber genau erforscht werden." Korrosion kann nämlich nicht nur die Funktion eines Geräts beeinträchtigen, sondern auch Verunreinigungen verursachen. "Wir müssen also genau hinschauen, wenn wir eine Technologie zu einer medizinischen Anwendung bringen wollen", betont der Forscher.

Sein Team beschränkt sich deshalb bei der Entwicklung von Mikro- und Nanorobotern nicht nur auf die technische Machbarkeit, sondern erforscht auch die Verträglichkeit, Toxizität und Effizienz der Roboter. Pané ist überzeugt, dass die Mikroroboter eines Tages das Potenzial besitzen, im Bereich der Biomedizin einen wichtigen Beitrag zu leisten. Es wäre das (vorläufige) Ziel einer Reise, die in einem Zürcher Trolleybus begonnen hat.


Literaturhinweis

Chen X-Z, Shamsudhin N, Hoop M, Pieters R, Siringil E, Sakar MS, Nelson BJ, Pané S: Magnetoelectric micromachines with wirelessly controlled navigation and functionality. Materials Horizons 2016, 3: 113-118, doi: 10.1039/C5MH00259A

Weitere Informationen finden Sie unter
https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/03/zelltod-durch-mikroroboter-magnetismus.html

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution104

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
Eidgenössische Technische Hochschule Zürich (ETH Zürich), Peter Rüegg, 22.03.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 25. März 2016

Zur Tagesausgabe / Zum Seitenanfang