Schattenblick → INFOPOOL → MEDIZIN → FAKTEN


MELDUNG/866: Nachrichten aus Forschung und Lehre vom 30.10.15 (idw)


Informationsdienst Wissenschaft - idw - Pressemitteilungen

→  Berlins neue Biobank für zukunftsweisende biomedizinische Forschung feiert Richtfest
→  Weltweit erster Mini-Teilchenbeschleuniger für hochbrillante Röntgenstrahlen
      an der Technische Universität München


Berlins neue Biobank für zukunftsweisende biomedizinische Forschung feiert Richtfest

Das Berliner Institut für Gesundheitsforschung/Berlin Institute of Health (BIH) und die Charité - Universitätsmedizin Berlin feierten am 28. Oktober 2015 das Richtfest für ihre neue, hochmoderne Biobank. Das Gebäude am Standort Charité Campus Virchow-Klinikum wird bis April 2016 fertiggestellt sein und mehr als zwei Millionen Proben aufnehmen können. BIH und Charité investieren 3,9 Millionen Euro in die gemeinsame Biobank, mit deren Bau im Frühjahr 2015 begonnen wurde.

Um molekulare Ursachen von Krankheiten erforschen zu können, benötigen Wissenschaftlerinnen und Wissenschaftler geeignete Biomaterialen wie Blut, Urin und Gewebeproben sowie Behandlungsdaten. Diese Materialen werden in Biobanken unter kontrollierten und qualitativ gesicherten Bedingungen gesammelt, gelagert und verarbeitet.

"Spitzenforschung braucht Spitzenbedingungen. Professionelle Biobanken mit einer ausgezeichneten Qualität an Proben, einem hohen Automatisierungsgrad, kontinuierlichem Temperaturmonitoring und Datensicherheit sind eine Schlüsselvoraussetzung für innovative biomedizinische Forschung. Daher hat das Berliner Institut für Gesundheitsforschung mit der neuen Biobank zukünftig noch bessere Voraussetzungen, um erfolgreiche, unabhängige und international wettbewerbsfähige Forschung zu betreiben", betont Dr. Georg Schütte, Staatssekretär im Bundesministerium für Bildung und Forschung. "Exzellente Infrastrukturen und Rahmenbedingungen sind Bedingungen dafür, dass biomedizinische Wissenschaft in Berlin attraktiv und zukunftsträchtig ist. Deshalb ist der Neubau der Biobank ein enorm wichtiger Schritt für das Institut für Gesundheitsforschung und damit für Berlin. Die Anwendung von aktuellen und zukünftigen Technologien bei Biomaterialien eröffnet neues Potenzial für die translationale Forschung. Ich bin deshalb überzeugt davon, dass sich das Engagement des BIH und der Charité lohnen wird", so Sandra Scheeres, Berlins Senatorin für Wissenschaft. Wegweisend sind die Anwendungen der besten Technologien mit qualitativ hochwertigen Biomaterialien vor allem zur Identifizierung von Biomarkern, für neues Wissen um Entstehung und Entwicklung von Krankheiten und damit für die personalisierte Medizin.

Die Biobank des Berliner Instituts für Gesundheitsforschung wird an zwei Standorten in Berlin etabliert: am Charité Campus Virchow-Klinikum - dort werden vor allem Biomaterialien aus der Krankenversorgung und klinischen Forschung gesammelt und gelagert - sowie am Charité Campus Berlin-Buch mit dem Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC). In Berlin-Buch werden schwerpunktmäßig flüssige Proben von großen Patienten-Kohorten langfristig aufbewahrt. Die Proben aus beiden Standorten stehen Forschungsprojekten des BIH zur Verfügung.

"Besonderes Kennzeichen der neuen Biobank am Charité Campus Virchow-Klinikum sind die vielfältigen Lagerungsmöglichkeiten", erklärt Prof. Dr. Michael Hummel, Leiter der BIH-Biobank der Charité. In einem neuen automatisierten Tiefkühllager können etwa eine Million Proben bei minus 80 Grad Celsius gelagert werden. Damit gehört die neue Biobank zu den größten Biobanken in Deutschland. Zudem können mindestens eine weitere Million Proben auch in flüssigem Stickstoff (bei bis zu minus 196 Grad Celsius) oder anderen Temperaturen in der neuen BIH-Biobank aufgenommen werden. Neben den Lagern für die Proben verfügt die BIH-Biobank auch über Büros und Labore zur Verarbeitung und Analyse der Proben: "Wir verstehen uns als Dienstleister für die Forschung", sagt Prof. Dr. Michael Hummel, "und koordinieren auch Prozesse und unterstützen die Analyse der Biomaterialien. Dabei arbeiten wir eng mit den BIH-Omics-Technologieplattformen Genomik, Proteomik und Metabolomik sowie mit der Technologieplattform Bioinformatik zusammen."

Die neue Biobank wird Proben von Patientinnen und Patienten der Charité sowie aus klinischen Studien der BIH-Forschungsprojekte aufnehmen. Probenmaterial und Daten der Patientinnen und Patienten sind dabei bestens geschützt: Die neue Biobank arbeitet mit einem geprüften Datenschutzkonzept, das aufgrund einer doppelten Pseudonymisierung (doppelte Kodierung) der Proben und Daten eine Re-Identifizierung von Patientinnen und Patienten sowie Probandinnen und Probanden unmöglich macht. Die Verwendung von Proben und Daten für Forschungsprojekte ist nur nach vorheriger Einwilligung der Ethikkommission der Charité möglich.

Über das Berliner Institut für Gesundheitsforschung/Berlin Institute of Health (BIH)

Das Berliner Institut für Gesundheitsforschung/Berlin Institute of Health (BIH) wurde 2013 gegründet. Es ist ein Zusammenschluss der Charité - Universitätsmedizin Berlin und des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) mit dem Ziel, translationale Medizin basierend auf einem systemmedizinischen Ansatz und durch die beschleunigte Übertragung von Forschungserkenntnissen in die Klinik sowie die Rückkoppelung klinischer Befunde in die Grundlagenforschung voranzubringen. Seit April 2015 ist das BIH selbstständige Körperschaft des öffentlichen Rechts, Charité und MDC sind darin eigenständige Gliedkörperschaften. Das Institut wird mit neuen wissenschaftlichen und technologischen Entwicklungen in der Biomedizin neue diagnostische, therapeutische und präventive Ansätze in der Medizin und damit für die Gesundheit der Menschen schaffen.

• Weitere Informationen finden Sie unter
http://www.bihealth.org

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution1860

Quelle: Berliner Institut für Gesundheitsforschung / Berlin Institute of Health, Alexandra Hensel, 29.10.2015

Raute

Technische Universität München - 29.10.2015

Weltweit erster Mini-Teilchenbeschleuniger für hochbrillante Röntgenstrahlen an der TUM

Seit einigen Jahren lassen sich hoch brillante Röntgenstrahlen mit ringförmigen Teilchenbeschleunigern (Synchrotronquellen) erzeugen. Diese haben aber bisher einen Durchmesser von mehreren hundert Metern und kosten einige Milliarden Euro. An der Technischen Universität München ist heute das weltweit erste Mini-Synchrotron eingeweiht worden, mit dem hoch brillante Röntgenstrahlen auf einer Fläche von nur 5 x 3 m erzeugt werden können. Mit dem neuen Gerät sollen vor allem biomedizinische Fragestellungen zu Tumorerkrankungen, Osteoporose, Lungenerkrankungen und Arteriosklerose erforscht werden.

Seit einigen Jahren lassen sich hoch brillante Röntgenstrahlen mit ringförmigen Teilchenbeschleunigern (Synchrotronquellen) erzeugen. Diese haben aber bisher einen Durchmesser von mehreren hundert Metern und kosten einige Milliarden Euro. An der Technischen Universität München ist heute das weltweit erste Mini-Synchrotron eingeweiht worden, mit dem hoch brillante Röntgenstrahlen auf einer Fläche von nur 5 x 3 m erzeugt werden können. Mit dem neuen Gerät sollen vor allem biomedizinische Fragestellungen zu Tumorerkrankungen, Osteoporose, Lungenerkrankungen und Arteriosklerose erforscht werden.

Wissenschaftler und Ärzte setzen Röntgenstrahlung auch 120 Jahre nach ihrer Entdeckung standardmäßig für diagnostische Zwecke ein. Deshalb ist es ein großes Ziel, die Strahlen qualitativ hochwertiger und damit die Diagnosen genauer zu machen. So könnten zum Beispiel auch Weichteile wie Gewebe besser abgebildet und schon kleinste Tumore erkannt werden. Ein Team der Technischen Universität München (TUM) unter der Leitung von Prof. Franz Pfeiffer, Lehrstuhl für Biomedizinische Physik, entwickelt deshalb schon seit Langem neue Röntgentechniken.

Seit 29. Oktober können die Wissenschaftler jetzt das weltweit erste Mini-Synchrotron für hoch brillante Röntgenstrahlung in ihrem Institut nutzen. Die "Munich Compact Light Source" (MuCLS) ist Teil des neuen "Center for Advanced Laser Applications" (CALA), einem Gemeinschaftsprojekt der TUM und der Ludwig-Maximilians-Universität München (LMU).

Neue Technik: Kollision von Elektronen und Laser

Die Firma Lyncean Technologies aus Kalifornien, die dieses Mini-Synchrotron entwickelt hat, setzte dabei eine besondere Technik ein. Große Ringbeschleuniger erzeugen Röntgenstrahlen, indem energiereiche Elektronen durch Magnete abgelenkt werden. Die hohe Energie erhalten sie durch extreme Beschleunigung, wofür die großen Ringsysteme notwendig sind.

Das neue Synchrotron nutzt eine Technik, bei der Röntgenstrahlen entstehen, wenn Laserlicht auf schnelle Elektronen trifft - in einem Raumgebiet, das halb so dünn ist wie ein menschliches Haar. Der große Vorteil: hierfür können die Elektronen sehr viel langsamer sein. Deshalb können sie auch in einem kleinen Ringbeschleuniger von weniger als 5 Meter Umfang gespeichert werden, während dazu ein Synchrotron einen Umfang von fast tausend Metern benötigt.

"Früher mussten wir uns lange vorher bei den großen Synchrotron-Systemen anmelden, wenn wir ein Experiment machen wollten. Jetzt können wir mit einem eigenen Gerät in unseren Laboren arbeiten - das bringt uns in unseren Forschungsarbeiten sehr viel schneller voran", so Pfeiffer.

Intensiver, variabler und mit besserer Auflösung

Das neue System hat neben der geringen Größe noch mehr Vorteile im Vergleich zu klassischen Röntgenröhren: die Röntgenstrahlen sind extrem hell und intensiv. Die Energie der Strahlen lässt sich sehr genau steuern, so dass sie zum Beispiel für unterschiedliche Gewebetypen einsetzbar sind. Zudem ermöglichen sie eine sehr viel bessere räumliche Auflösung, weil der Entstehungsort des Strahls durch die gezielte Kollision weniger diffus ist.

"Mit der brillanten Strahlung lassen sich einzelne Materialien besser unterscheiden wodurch wir in Zukunft schon sehr viel kleinere Tumore im Gewebe erkennen können. Unser Forschungsspektrum wird aber auch die Vermessung von Knocheneigenschaften bei Osteoporose oder die Bestimmung veränderter Lungenbläschengröße bei diversen Lungenkrankheiten umfassen", so Dr. Klaus Achterhold aus dem MuCLS-Team.

Die Wissenschaftler werden das Gerät erstmal vor allem für vorklinische Forschung verwenden, indem sie Gewebeproben von Patienten untersuchen. Außerdem kombinieren sie die neue Röntgenquelle mit anderen Systemen, wie dem Phasenkontrast. Die neuartige Röntgenphasenkontrast-Technik hat die Gruppe von Franz Pfeiffer führend mitentwickelt und verfeinert.

• Kontakt
Dr. Klaus Achterhold
Technische Universität München
Fakultät für Physik (E17)
klaus.achterhold@ph.tum.de

Weitere Informationen finden Sie unter

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32713
Die Pressemeldung im Web

http://www.e17.ph.tum.de
TUM Lehrstuhl für Biomedizinische Physik (Prof. Franz Pfeiffer)

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution73

Quelle: Technische Universität München, Dr. Ulrich Marsch, 29.10.2015

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 31. Oktober 2015

Zur Tagesausgabe / Zum Seitenanfang