Schattenblick →INFOPOOL →MEDIZIN → FAKTEN

MELDUNG/093: Nachrichten aus Forschung und Lehre vom 06.04.10 (idw)


Informationsdienst Wissenschaft - idw - Pressemitteilungen


→  Mit Computersimulationen gegen Leberkrebs
→  Hirntumoren: Gewebestammzelle wird zur Tumorstammzelle
→  Fünfhundert Gene dirigieren den Takt des Herzens
→  Europäisches Team in Wien präsentiert Datenbank zur Zellteilungsforschung

Raute

Universität Regensburg - 01.04.2010

Mit Computersimulationen gegen Leberkrebs

Leberkrebs ist gerade in westlichen Ländern eine häufig vorkommende Erkrankung. Dennoch ist das Wissen um die Ursachen und den Verlauf dieser gefährlichen Krankheit immer noch begrenzt. Bösartige Lebertumore können durch Entzündungen hervorgerufen werden, die in die Vorgänge des programmierten bzw. "normalen" Zelltods eingreifen können. Zwei besondere Botenmoleküle - Tumor Necrosis Factor (TNF) und TNF-Related Apoptosis-inducing Ligand (TRAIL) - steuern dabei die Weiterleitung von Entzündungs- sowie von Zelltodsignalen in den Leberzellen. Wie diese Vorgänge aber genau ablaufen, ist nur in Ansätzen bekannt.

Mit einem neuen Forschungsprojekt wollen nun Forscher der Universität Regensburg diese Wissenslücke schließen. Die Arbeitsgruppe um Prof. Dr. Rainer Spang vom Institut für Funktionelle Genomik der Universität Regensburg erhofft sich zudem, auf dieser Grundlage neuartige Therapiemöglichkeiten gegen Leberkrebs entwickeln zu können. Die Forscher werden dabei die krebsauslösenden Vorgänge der Signalweiterleitung in den Leberzellen am Computer nachbilden. Die am Bildschirm erarbeiteten Modelle sollen helfen zu verstehen, wie und zu welchem Zeitpunkt man therapeutisch eingreifen kann, um Leberkrebs wirksam zu bekämpfen oder seine Entstehung sogar generell zu verhindern.

Die Regensburger Arbeitsgruppe ist dabei Teil des internationalen Projekts "Systemische Analysen von TNF und TRAIL Signalwegen in Leberzellen", an dem auch Wissenschaftler der Universität Heidelberg und des Imperial College in London beteiligt sind. Das Projekt hat im März 2010 seine Arbeit aufgenommen und läuft über einen Zeitraum von drei Jahren. Das Bundesministerium für Bildung und Forschung (BMBF) fördert allein die Regensburger Arbeitsgruppe mit mehr als € 210.000.

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution87

Quelle: Universität Regensburg, Alexander Schlaak, 01.04.2010

Raute

Deutsches Krebsforschungszentrum - 01.04.2010

Hirntumoren: Gewebestammzelle wird zur Tumorstammzelle

Schlüsselmolekül für die Krebsentstehung entdeckt

Wissenschaftler aus dem Deutschen Krebsforschungszentrum wiesen zum ersten Mal nach, dass bösartige Hirntumoren direkt aus Hirn-Stammzellen entstehen. Das Protein Tlx sorgt im erwachsenen Gehirn dafür, dass aus Gewebe-Stammzellen neue Nervenzellen entstehen. Zuviel Tlx regt bei Mäusen die Bildung bösartiger Hirntumoren aus Hirn-Stammzellen an. Auch beim Glioblastom, dem bösartigsten Hirntumor des Menschen, spielt Tlx eine Rolle. Mit Tlx ist daher erstmalig ein möglicher Angriffspunkt für zielgerichtete Therapien gegen das gefährliche Glioblastom entdeckt.

Die "Wiege" neuer Nervenzellen im erwachsenen Gehirn ist gut bekannt: Es ist die so genannte subventrikulare Zone, eine Gewebeschicht entlang der seitlichen Hirnkammern. Hier sind die neuralen oder Hirn-Stammzellen angesiedelt, die im Bedarfsfall für die Bildung neuer Nervenzellen sorgen. Die subventrikulare Zone gilt lange schon auch als Keimzelle für eine bestimmte Art bösartiger Hirntumoren - die Gliome, deren gefährlichster Vertreter das Glioblastom ist.

Wissenschaftler aus den Abteilungen von Professor Dr. Günther Schütz und Professor Dr. Peter Lichter im Deutschen Krebsforschungszentrum zeigten kürzlich bei Mäusen, dass Hirn-Stammzellen in der subventrikularen Zone durch ein bestimmtes Molekül gekennzeichnet sind: Das Protein Tlx, ein so genannter Transkriptionsfaktor, regt die Aktivität verschiedener Gene an. Beim erwachsenen Tier wird Tlx ausschließlich in Hirn-Stammzellen gebildet. Schalteten die Wissenschaftler Tlx aus, so ließen sich keine Stammzellen im Gehirn mehr nachweisen und die Neubildung junger Nervenzellen versiegte. Das Funktionieren der Stammzellen ist offenbar von der Anwesenheit dieses Proteins abhängig.

In ihrer neuen Studie machten die Teams von Günther Schütz und Peter Lichter gemeinsam mit Professor Dr. Guido Reifenberger, Universität Düsseldorf, nun die Gegenprobe: Was passiert, wenn die Tlx-Produktion gesteigert wird? Durch einen molekularbiologischen Trick veranlassten die Forscher die Hirn-Stammzellen von Mäusen zur Tlx-Überproduktion. Die Folge war, dass die Zellteilungsaktivität in der subventrikulären Zone anstieg, die Zellen ihre angestammte Umgebung, die so genannte Stammzellnische, verließen und Glioblastom-ähnliche Gewebeveränderungen ausbildeten. Schalteten die Wissenschafter zusätzlich noch das Protein p53 als wichtigste Krebsbremse experimentell aus, so entstanden aus den Krebsvorläufern invasiv wachsende Glioblastome.

Darüber hinaus entdeckten die Wissenschaftler, dass Stammzellen mit gesteigerter Tlx-Produktion die Gefäßneubildung anregen. Dies ermöglicht den Zellen, in weiter entfernte Bereiche des Gehirns einzuwandern und so das typische korallenstockartige Wachstum des Glioblastoms zu erzeugen.

"Wir erkennen Hirn-Stammzellen spezifisch an ihrer Tlx-Produktion. Wenn wir diese ankurbeln, verwandelt sich die Gewebe-Stammzelle in eine Krebs-Stammzelle, aus der bösartige Glioblastome entstehen - daher können wir nun erstmals die Hirn-Stammzellen direkt für die Entstehung von Hirntumor-Stammzellen verantwortlich machen", erklärt Günther Schütz.

Die Wissenschaftler gehen davon aus, dass sie auf der Basis dieser Ergebnisse aus der zellbiologischen Grundlagenforschung neue Therapien gegen das gefährliche Glioblastom entwickeln können. Tlx scheint nicht nur im Mäuse-Gehirn eine verhängnisvolle Rolle zu spielen: Im Tumorgewebe von Glioblastom-Patienten entdeckten Lichter und Reifenberger, dass das Tlx-Gen häufig vervielfältigt ist und daher mehr Tlx-Protein gebildet wird. "Offenbar sind auch beim Menschen die Hirntumor-Stammzellen auf Tlx angewiesen. Daher können wir nun versuchen, Therapien zu entwickeln, die sich ganz spezifisch gegen Tlx-produzierende Zellen richten", beschreibt Schütz die nächsten Schritte. Mit den Mäusen, deren Hirnstammzellen zuviel Tlx produzieren, steht ihm ein ideales Modellsystem für solche Untersuchungen zur Verfügung.

Veröffentlichung:
Hai-Kun Liu, Ying Wang, Thorsten Belz, Dagmar Bock, Andrea Takacs, Bernhard Radlwimmer, Sebastian Barbus, Guido Reifenberger, Peter Lichter und Günther Schütz:
The nuclear receptor tailless induces long term neural stem cell expansion and brain tumor initiation.
Genes & Development, 1. April 2010

Das Deutsche Krebsforschungszentrum (DKFZ) ist die größte biomedizinische Forschungseinrichtung in Deutschland und Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren. Über 2.000 Mitarbeiter und Mitarbeiterinnen, davon 850 Wissenschaftler, erforschen die Mechanismen der Krebsentstehung und arbeiten an der Erfassung von Krebsrisikofaktoren. Sie liefern die Grundlagen für die Entwicklung neuer Ansätze in der Vorbeugung, Diagnose und Therapie von Krebserkrankungen. Daneben klären die Mitarbeiter und Mitarbeiterinnen des Krebsinformationsdienstes (KID) Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert.

Weitere Informationen finden Sie unter
http://www.dkfz.de

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution386

Quelle: Deutsches Krebsforschungszentrum, Dr. Stefanie Seltmann, 01.04.2010

Raute

Akademie der Wissenschaften GmbH - 01.04.2010

Fünfhundert Gene dirigieren den Takt des Herzens

Wiener Forscher erstellen erste vollständige Genkarte der Herzfunktion

Ein internationales Forscherteam um IMBA-Direktor Josef Penninger identifizierte sämtliche Gene, die an der Regulation der Herzfunktion beteiligt sind. Dieses Wissen ist eine wesentliche Voraussetzung für die Entwicklung dringend benötigter Herzmedikamente. Die aktuelle Ausgabe des Journals Cell widmet den neuen Erkenntnissen eine Titelgeschichte.

Pro Jahr sterben rund 15 000 Österreicher am plötzlichen Herztod. Ohne spürbare vorangegangene Warnzeichen hört ihr Herz auf zu schlagen, nicht selten trifft es scheinbar gesunde, junge Menschen. Ursache ist immer eine Vorerkrankung des Herzens, die aber nicht immer bemerkt wird. Dazu kommt als Auslöser eine Stresssituation - zum Beispiel sportliche Betätigung - die zu einer Rhythmusstörung führt.

Mediziner suchen seit langem nach erkennbaren Risikofaktoren, die Menschen für solche tödlichen Rhythmusstörungen anfällig machen. In jüngster Zeit konnten Molekularbiologen wertvolle Hinweise liefern: immer wieder fanden sie Gene, die wesentlich an der Herzfunktion beteiligt sind und bei Erkrankungen eine Rolle spielen.

Eine Landkarte der Herzfunktion

Josef Penninger und sein Postdoktorand Greg Neely am Institut für Molekulare Biotechnologie der Akademie der Wissenschaften (IMBA) gingen die Suche systematisch an. Gemeinsam mit Forschern aus den USA, Kanada, Japan, Indien, Italien und Deutschland erarbeiteten sie eine "Landkarte" aller an der Herzfunktion beteiligten Gene und ihrer Wechselwirkungen. Die Karte, die an das Streckennetz einer Fluggesellschaft erinnert, ist ein Datenschatz für Herzspezialisten. "Die Information, die uns nun zur Verfügung steht, wird in zahlreiche weitere Forschungsprojekte einfließen und gibt uns Hinweise, wo wir in Zukunft mit Medikamenten ansetzen könnten", meint Neely. Die riesige Rechnerleistung, die zu ihrer Erstellung nötig war, lieferte ein Bioinformatik-Team in Bangalore.

Um an die Gene heranzukommen, bedienten sich die Forscher der hauseigenen Taufliegen-Sammlung VDRC (Vienna Drosophila Research Center). Gemeinsam mit dem kalifornischen Fliegen-Herzspezialisten Rolf Bodmer (Sanford-Burnham Medical Research Institute, La Jolla) konnten sie 500 Gene identifizieren, die für das einwand¬freie Funktionieren des Fliegenherzens notwendig sind. Wird eines dieser Gene blockiert, so droht dem Tier bei Stress ein schneller Herztod.

Von den gefundenen Herz-Genen war bisher nur etwa ein Drittel bekannt. Eines der neu identifizierten Gene, NOT-3, wurde von den Forschern genauer unter die Lupe genommen. Blockiert man es, so entwickeln die Fliegen schwere Herzrhythmusstörungen und erweiterte Herzkammern. Beim Menschen ist dieses Krankheitsbild als "dilatative Kardiomyopathie" bekannt und kann in seltenen Fällen vererbt werden.

Von Fliegen über Mäuse zum Menschen

Josef Penningers früherer Mitarbeiter Keiji Kuba (Akita University, Japan) konnte die an Fliegen gewonnenen Erkenntnisse auch für Wirbeltiere bestätigen. Blockiert man NOT-3 bei Mäusen, so kommt es ebenfalls zu krankhaften Veränderungen des Herzens und zu Herzstillstand bei Stress.

Die eindeutigen Versuchsergebnisse führten die Forscher bald zu der Frage, ob ein ähnlicher Mechanismus auch beim Menschen wirksam ist. Gemeinsam mit Andrew Hicks und Peter P. Pramstaller vom EURAC-Institut für Genetische Medizin in Bozen, Italien, und Arne Pfeufer vom Institut für Humangenetik am Helmholtz Zentrum in München, alle Teil des QTSCD Konsortiums (QT Interval and Sudden Cardiac Death), gelang der Beweis: Veränderungen in der NOT3-Region korrelieren auch beim Menschen mit einer erhöhten Anfälligkeit für Herzprobleme. Patienten mit dieser Veranlagung weisen im EKG ein verlängertes QT-Intervall auf. Sie spüren davon nichts, doch bei körperlicher Belastung kann es zu tödlichen Arrhythmien kommen.

Obwohl der Kreislauf bei Fliegen anders funktioniert als beim Menschen sind die Gene, die die Herzfunktion steuern, im Lauf der Evolution also kaum verändert worden. Als Studienobjekte sind Fliegen nahezu unschlagbar. "Unsere Arbeit mit Drosophila hat gezeigt, dass wir auf diese Weise krankheitsrelevante Gene finden können, die wir bei der Untersuchung an Menschen niemals entdeckt hätten", so Josef Penninger.

Hunderte Kandidaten-Gene warten nun darauf, auf ihre Beteiligung an Herzerkrankungen überprüft zu werden. In diese Arbeit wird noch viel Forscher-Herzblut fließen.

Die Arbeit
"A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function"
von G. Gregory Neely et al.
wird am 2. April 2010 in Cell publiziert.

Kontakt
Mag. Evelyn Missbach MAS
IMP-IMBA Communications
evelyn.missbach@imba.oeaw.ac.at

Wissenschaftlicher Kontakt:
Prof. Josef Penninger
josef.penninger@imba.oeaw.ac.at

Weitere Informationen finden Sie unter
- http://www.imba.oeaw.ac.at/research/josef-penninger
   Penninger-Labor Webseite

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution1270

Quelle: Akademie der Wissenschaften GmbH, Dr. Heidemarie Hurtl, 01.04.2010

Raute

IMP - Forschungsinstitut für Molekulare Pathologie GmbH - 01.04.2010

Gemeinsam der Teilung auf der Spur

Europäisches Team in Wien präsentiert Datenbank zur Zellteilungsforschung

Das im Jahr 2004 gestartete EU-Projekt MitoCheck, geleitet vom Wiener IMP (Institut für Molekulare Pathologie), wurde nun erfolgreich abgeschlossen. Elf europäische Forschungsteams und Unternehmen untersuchten die genetischen Grundlagen der Zellteilung. Die beiden Wissenschaftsjournale Science und Nature teilen sich die Veröffentlichung der Ergebnisse.

Wie aus einer Zelle zwei, aus zweien vier, und schließlich aus wenigen Zellen ein ganzer Organismus entsteht, hat Biologen und Mediziner seit eineinhalb Jahrhunderten interessiert. Seit dieser Zeit weiß man, dass alle Lebewesen aus Zellen aufgebaut sind, die durch wiederholte Teilung entstehen und letztendlich alle aus einer einzigen befruchteten Eizelle hervorgehen. Wie funktioniert das? Der Beantwortung dieser für die Lebenswissenschaften so zentralen Frage sind Biologen um Jan-Michael Peters am IMP jetzt ein wesentliches Stück näher gekommen.

Obwohl man die Zellteilung seit langer Zeit im Mikroskop genau verfolgen kann, war bisher nicht vollständig bekannt, welche Gene dafür verantwortlich sind. Noch weniger wusste man über die Rolle der Proteine, die nach dem Bauplan dieser Gene entstehen. Um diese Lücke zu schließen, schlossen sich vor sechs Jahren elf europäische Forschungsinstitute und Firmen unter der Leitung des IMP zusammen, um systematisch die molekularen Grundlagen der menschlichen Zellteilung zu untersuchen. Die Europäische Union förderte das Projekt "MitoCheck" mit 8,6 Millionen Euro. Die Ergebnisse der konzertierten Forschungsanstrengung werden nun erstmalig veröffentlicht.

Um herauszufinden, welche Gene für die Zellteilung notwendig sind, musste die MitoCheck-Arbeitsgruppe von Jan Ellenberg am EMBL (Europäisches Molekularbiologie Laboratorium, Heidelberg) systematisch Gen für Gen in menschlichen Zellen inaktivieren - insgesamt alle 22000. Anschließend verfolgten die Forscher im Mikroskop, ob diese Zellen sich weiterhin normal teilten. Die Arbeitsgruppe von Jan-Michael Peters am IMP untersuchte in weiteren Arbeitsschritten, wie die von diesen Genen hergestellten Proteine sich zu kleinen molekularen Maschinen zusammenfügen, die dann verschiedene Schritte der Zellteilung auslösen.

Das Ergebnis dieser internationalen Teamarbeit ist der erste Katalog aller menschlichen Gene, die für die Zellteilung notwendig sind. Gleichzeitig haben die Forscher nun den Bauplan für viele der molekularen Maschinen in der Hand, die die Funktion dieser Gene ausführen. Alle Daten wurden jetzt in Form einer Datenbank des menschlichen Genoms öffentlich zugänglich gemacht (www.mitocheck.org). Gleichzeitig publizierte das MitoCheck-Team die wichtigsten Schlussfolgerungen in den beiden Fachzeitschriften Science und Nature. 1) 2)

"Unsere Datenbank wird eine wichtige Informationsquelle für viele Bereiche der bio-medizinischen Forschung sein. Sie ist auch ein hervorragendes Beispiel dafür, dass in der Wissenschaft nur internationale Zusammenarbeit die Lösung schwieriger und ehrgeiziger Aufgaben ermöglicht", sagt Projektkoordinator Jan-Michael Peters. MitoCheck stellt nicht nur einen Meilenstein für das Verständnis der Zellteilung dar, sondern wird auch anderen Disziplinen der Lebenswissenschaften nützen. Die Arbeiten an MitoCheck haben die Entwicklung neuer Technologien, z.B. in der automatisierten Mikroskopie und der Proteomik, entscheidend vorangetrieben.

Langfristig wollen die Forscher die Zellteilung vollständig verstehen und dieses Wissen auch für die Entwicklung wirksamerer Krebsmedikamente nützen. Dazu wird allerdings noch viel Grundlagenarbeit notwendig sein. Der nächste große Schritt in diese Richtung ist bereits getan. Die Europäische Union fördert ein fünfjähriges Nachfolgeprojekt mit dem Namen "MitoSys", das ebenfalls wieder vom IMP koordiniert wird. Das Projekt startet noch in diesem Jahr.

1) Die Arbeit des IMP-Teams "Systematic Characterization of Human Protein Complexes Identifies Chromosome Segregation Proteins" (Hutchins et al.) erscheint am 1. April 2010 in der online-Ausgabe der Zeitschrift Science.

2) Die Arbeit des EMBL-Teams "Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes" (Neumann et al.) erscheint am 1. April 2010 in der Zeitschrift Nature.

Kontakt:
Mag. Evelyn Missbach MAS
IMP-IMBA Communications
evelyn.missbach@imba.oeaw.ac.at

Dr. Yan Sun
Projekt-Koordination
Yan.sun@imp.ac.at

Wissenschaftlicher Kontakt:
Dr. Jan-Michael Peters
Jan-Michael.Peters@imp.ac.at

EU-Projekt MitoCheck:
www.mitocheck.org

Weitere Informationen finden Sie unter
- http://www.mitocheck.org
   EU-Projekt MitoCheck offizielle Webseite

Kontaktdaten zum Absender der Pressemitteilung:
http://idw-online.de/pages/de/institution1272

Quelle: IMP - Forschungsinstitut für Molekulare Pathologie GmbH, Mag. Evelyn Missbach, MAS, 01.04.2010

Raute

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 7. April 2010