Schattenblick →INFOPOOL →MEDIZIN → FAKTEN

FORSCHUNG/2914: Durch die Pore gefädelt - Einzelmolekül-Detektion von Hydroxymethylcytosin in DNA (idw)


Gesellschaft Deutscher Chemiker e.V. - 24.04.2013

Durch die Pore gefädelt

Einzelmolekül-Detektion von Hydroxymethylcytosin in DNA



Veränderungen an den Basen der DNA dienen als Markierung, welche Gene eine Zelle ablesen soll und welche nicht. Ein britisches Team stellt in der Zeitschrift Angewandte Chemie jetzt eine neue Methode vor, mit der man die seltenen Genabschnitte, die die veränderte Base Hydroxymethylcytosin enthalten, anreichern und einzelne Hydroxymethylcytosin-Moleküle in der DNA identifizieren kann. Krebs und Autoimmunerkrankungen können mit solchen Veränderungen zusammenhängen.

Die Basen Adenin, Guanin, Cytosin und Thymin bilden den genetischen Code. Jede Körperzelle besitzt einen identischen Satz der kompletten Erbinformation. Dennoch unterscheiden sich Gewebe stark voneinander, da die Zellen in der Lage sind, eine spezifische Auswahl an Genen in Proteine zu übersetzen, während andere Gene nicht genutzt werden. So genannte epigenetische Faktoren wie "Markierungen" auf der DNA steuern dies. Die Base Cytosin kann verschiedene Seitengruppen tragen, etwa eine Methyl- oder Hydroxymethylgruppe. Eine dichte Methylierung regulativer Genabschnitte etwa bewirkt, dass die zugehörigen Gene ausgeschaltet werden. Während der embryonalen Entwicklung entstehen Methylierungsmuster, die die Zelldifferenzierung auslösen. Veränderte Methylierungsmuster können mit Autoimmunerkrankungen und Krebs im Zusammenhang stehen. Auch Hydroxymethylcytosin-Muster scheinen eine Rolle bei der Differenzierung embryonaler Stammzellen sowie bei der Genexpression in den Zellen des zentralen Nervensystems zu spielen.

Entsprechend wichtig sind Sequenzierungsmethoden, mit denen sich epigenetische Basen spezifisch detektieren lassen. Bisher gelang die Identifizierung von Hydroxymethylcytosin nur mithilfe aufwändiger, teurer oder sehr fehlerträchtiger Verfahren. Das Team um Hagan Bayley von der Universität Oxford (Großbritannien) hat nun eine chemische Modifizierung entwickelt, mit der sich auch Hydroxymethylcytosin und Methylcytosin bei einer Sequenzierung in Nanoporen unterscheiden lassen.

Die vor einigen Jahren von Oxford Nanopore, einer von Hagan Bayley 2005 gegründeten Firma, entwickelte Nanoporen-Methode ist eine vielversprechende Alternative zur Sequenzierung einzelner DNA-Moleküle ohne Amplifizierungsschritt. "Eingespeist" durch ein Enzym fädelt sich ein DNA-Einzelstrang dabei durch die in eine Membran eingebettete Protein-Pore. Je nachdem, welche der Basen sich gerade in Höhe deren engster Stelle befindet, entsteht eine charakteristische Änderung des gemessenen Stromflusses durch die Pore.

Eine chemische Reaktion des Hydroxymethylcytosins mit Bisulfit und einem Cystein enthaltenden Peptid, die die anderen Basen, auch Methylcytosin, unverändert lässt, verbessert die Auflösung der durch die verschiedenen Basen ausgelösten Unterschiede im Stromfluss erheblich.

An der modifizierten Stelle lässt sich zudem ein fluoreszierender Marker oder eine molekulare "Öse" anknüpfen, mit der die seltenen Hydroxymethylcytosin enthaltenden DNA-Fragmente an einen passenden "Haken" gebunden und so gegenüber unmodifizierten Fragmenten angereichert werden können. Auf diese Weise ist eine rasche Sequenzanalyse dieser Fragmente möglich.


Angewandte Chemie: Presseinfo 15/2013

Autor: Hagan Bayley, University of Oxford (UK)
http://bayley.chem.ox.ac.uk/hbayley/

Angewandte Chemie, Permalink to the article:
http://dx.doi.org/10.1002/ange.201300413

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen finden Sie unter
http://www.presse.angewandte.de

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution122

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
Gesellschaft Deutscher Chemiker e.V., Dr. Renate Hoer, 24.04.2013
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 26. April 2013